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ENTRANCE SECTION OF A PLANAR TURBULENT JET IN TRANSVERSE FLOW 

T. A. Girshovich UDC 532.525.2 

The author presents a solution for the entrance section of a planar turbulent 
jet in a carrier stream, accounting for additional ejection of liquid in the 
upstream mixing zone. 

Reference [i] examined a solution of the problem of the entrance section of a planar 
turbulent jet generated in a transverse flow, using an integral method. The system of jet 
boundary layer equations, written in curvilinear coordinates fixed to the jet axis, is 
closed by means of the Prandtl formula for the shear stresses in which curvature is not 
accounted for. For high carrier stream speeds this solution does not agree well with ex- 
perimental data. 

Figure 1 shows the experimentally obtained width of the mixing zone, as described in 
[i], for jet to flow velocity ratios of uo/V~ = 9.35, 4.83, 3.23. The broken lines are the 
width of the mixing zone for the ordinary immersed jet (V~ = 0)o It can be seen from Fig. 1 
that the upstream mixing zone is wider than the downstream one, and the difference between 
them increases with increase of the carrier stream velocity. The jet in the upstream mixing 
zone seems to eject additional mass, compared with the ejection into the mixing zone of the 
ordinary immersed jet and into the downstream mixing zone. The apparent cause is the in- 
fluence of jet curvature, which can be quite large in the entrance section, on the intensity 
of mixing. It is known (see, e.g., [2]) that mixing proceeds with greater intensity in a 
stream flowing along a curved convex wall where the velocity falls with increasing distance 
from the wall, since centrifugal force ejects fast particles along the radius from the cen- 
ter of curvature with greater intensity than slow particles, and therefore the thickness of 
the mixing zone must be larger than when there are no centrifugal forces. The presence of 
a centrifugal force is linked to curvature of the jet, and the centrifugal force is greater, 
the greater is the component of carrier stream velocity normal to the axis. An increase of 
the speed of the carrier stream for a given initial jet speed leads to an increase of jet 
curvature, of the carrier stream velocity component normal to its axis, and of the centri- 
fugal force. This in turn must lead to an increase in the additional mass coupled to the 
forward part of the jet. The jet curves with increasing distance form the source, the angle 
between the axis and the carrier stream is reduced, and therefore the normal flow velocity 
component is reduced and tends to zero in the limit. Therefore, the added ejection should 
not be taken into account in calculating the main section. But in the development of the 
entrance section, the added ejection into the upstream mixing zone of the jet must play an 
important role. 

Sergo Ordzhonikidze Moscow Aviation Institute. Translated from Inzhenerno-Fizicheskii 
Zhurnal, Vol. 44, No. i, pp. 22-28, January, 1983. Original article submitted July 2, 1981. 
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Fig. i. The width of the upstream and downstream mixing zones as a 
function of the distance from the nozzle rim: i) uo/V= = 9.35; 2) 
4.83; 3) 3.23; 4) width of the mixing zone of an immersed jet. 

Fig. 2. Diagram of the entrance section of a planar jet in a carrier 
stream. 

Below we present the solution of the problem of the entrance section of a planar tur- 
bulent jet in a carrier stream, accounting for the added ejection in the upstream part of 
the jet. To close the system of boundary layer equations, written in curvilinear coordinates 
fixed to the jet axis, following [3] we use the differential equation for the mass flux of 
liquid ejected by the jet. 

To solve the problem we make the following assumptions: i) The curved jet axis is a 
zero stream line; 2) the radius of curvature of the curved axis in the entrance section is 
constant; 3) in the constant total pressure core the transverse velocity is considerably 
less than the longitudinal; 4) the variation of mass flow rate in the internal(downstream) 
mixing zone is proportional to the velocity at the interior boundary of the core; 5) the 
variation of excess mass flow rate in the external (upstream) mixing zone is equal to the 
sum of two components, proportional, respectively, to the excess velocity in the jet core 
(relative to the velocity at the upstream boundary of the jet) and to the normal velocity 
component of the carrier stream; 6) in each of the mixing zones the velocity profiles are 
similar across the mixing zone; and 7) in accordance with [4] we can consider the pressure 
behind the jet to be 2(p~-- Po)/ V~ = 0.7. 

It should be noted that reference [5] also used a differential equation for the mass 
flow rate of liquid ejected by the jet, but there the flow rate was considered to be propor- 
tional only to the difference in the longitudinal components of velocity in the jet core 
and in the stream, i.e., the added ejection was not accounted for. 

The conditions at the external boundary, as was true in [i], are determined from con- 
sidering flow over the jet as boundary-free potential flow over a solid curved wall. Here, 
proceeding from assumption 2, the velocity and pressure at the external jet boundary are 
determined from the boundary-free zero-circulation flow with velocity V~ over a cylinder of 
radius R. At the internal boundary the velocity and pressure were taken as zero (the pres- 
sure was computed from the static: pressure behind the jet Po). 

The 'velocities in the potential core were determined in [I] and have the form (Fig. 2) 

ui = uo exp  [-- (bo~ + y)lR]. ( 1 )  

To determine the boundaries of the internal mixing zone we use the condition of conser- 
vation of momentum of the internal part of the jet and the equation for the variation of 
mass flux through the jet 

d 0 

(u ~+ p/p) dy O, 
dx (2) 

Yl int  
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d 0 

dx ~ udy = v e = Ciulint. (3) 
Y 1 i n t  

Here u is the longitudinal velocity component (along the curved axis) of the liquid in 
the jet; p, density; Ve, transverse velocity of liquid ejected by the jet; and c,, empirical 
constant. 

Correspondingly, to determine the boundaries of the external mixing zone we can use an 
integral relation for the excess jet momentum and the equation for variation of the excess 
mass flux of impurity along the jet axis. 

The first relation is obtained by integrating the equation of motion, transformed with 
the aid of the continuity equation, across the jet from y = 0 to y = Y~ext, and has the form 

Vlexte , p6 du~ e ext d 
[u(u--u~)-+- p/p] dg = YI ext p -- dx ~ ud~. 

dx ~ 
(4) 

According to assumption 5, the equation for the excess mass flux of impurity has the form 

vl ext d 
~ (it - -  u6) dg = C 1 (u~ ext--  g~) -I- c2g~ cos ~. 

dx 
(5) 

Here c= is a second empirical constant. 

According to assumption 6, the dimensionless velocity profiles in the internal and ex- 
ternal mixing zones can be represented in the form 

---- { int int. lnt--~ [0 O]ex t > I) " U, in t 0 Olin > I) , Uiext~U5 - ,  ext ex~ ext 1), t6) 

where 

g, int-- Y glext - -  g (7) 
qint-- , N e x t -  

lJlint-- ~/2 int 91.ext-- g2~ext 

For the integration within the jet core we use an expression, Eq. (i), for the velocity, 
and we determine the pressure in the mixing zone by integrating the condition for transverse 
equilibrium across the jet (see [4, 6]) 

1 dp u 2 

o 8v R ' (8) 

whence in the internal mixing zone we obtain 

1 

b I'-p-pp d~|int= -- O, 106 ~ u12 int 

and in the external mixing zone we obtain 

(9) 

1 51 0.4165zu~ + P ~ u ~ i -~p dVmxt = - - ~ -  "-~(U~int-- ~ex~ -k ~ -~-u~q- O,744u6(Ulext--u6)q- O,310(u~ ext--  u6) z . (10)  
b P 

Following integration of Eqs. (2)-(5) under the conditions 

6 i = 6 2 = 0 ,  y2 in t=- -boz ,  F2ext=bol  at x = O  (il) 
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and after writing these equations in a form allowing successive approximations to be con- 
structed in order to determine 52, 8~, Yaint and Yaext, we obtain 

2, ,,,,or I I u.o, i . C 1 d x  -j-  R , ~0 / ' 
~" -- O, 5 int ~. Uo 

(12) 

o,55("'~ a >/  
, Uo V~ Uo ,/ 

q ,UteXtdx__2c, V~176 ~+c2 ~ + - - - - Y ~ e x t - - R  exp - -  
U o /Z o U o V~ l.t o , 

R (  u l2intt ( " 0,106-~-) u~int y~int = - b o a - - ~  1 ug / - -26~  0,416 u~ ' 

Y'2ext =: bol 1 -- + - 7  exp --~ 
,, 0 / �9 U 0 

u!~ext ] i  (13) 
u0 =]I' 

(14) 

dx 

( 1 ( . ) 2  x duoJv v ,r uovo A.__.ext,I 2bo  u,ex  
- - 2 , f  d ~  u0 / LR exp _ _ - ~ ] _ _ f f ' e x t  @61 0,45~Uo-t-O,bb--~-o-)fdx-- exp 

o , , Uo J ~ R u~ 

--4~[exp -- R / Uo Uo V uo x 

• O ' 1 3 4 - V - ~ 0 + O ' 4 1 6 - - - - u 0  / R" , -- 0"41662 @ 2- " ug 

u~ ' "0,066 u~V2 l ex[1 _L 61 ( ~ + 0 . 1 2 4  
u~ / , Y;u~ 

u2 ] 
Ulexr%V~ 0 310 lexy~ 

uoV~"o + " u--7--/ " 
(15) 

In the limit as V~ + 0 and R -> =, from Eqs. (12)-(15) we obtain a solution for the 
ordinary immersed jet 

- -  - -  x, go 0 .5- -  0,4166. 
0,134 (16) 

From the first equation of Eq. (16) we can evaluate the empirica ! constant c,. Since 
d~ = 0.3 for the immersed jet, we have 

c 1 ~ 0,04. (17) 

E q u a t i o n s  (12 ) - (15 )  can be s o l v e d  s i m u l t a n e o u s l y  by t h e  method of  s u c c e s s i v e  approxima- '  
tions. These equations contain the quantities ud/V~, 2p~/pV~ , and R, the radius of curva- 
ture of the jet axis. The first two equations can be found, as was noted above, as the vel- 
ocity and pressure on the surface of a cylinder of radius R washed by a stream with velocity 
V~: 

u8 _ 2 sin ~ ,  
V R ( lS)  

2p~ = 1.7--  4s in  2--~-x . 
PVl R (19) 
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Here 

x - - R  a r c s i n - ~  (20) 
R 

and  we n o t e  t h a t  t h e  s t a t i c  p r e s s u r e  i s  . c a l c u l a t e d  f r o m  t h e  p r e s s u r e  i n  t h e  r e v e r s e  f l o w  
z o n e  b e h i n d  t h e  j e t ,  w h i c h ,  i n  a c c o r d a n c e  w i t h  a s s u m p t i o n  7 ,  i s  t a k e n  to  b e  Po = P~ --  0 . 7 p  
V 2 

Here Po is the pressure in the reverse flow zone, and p~ is the pressure in the flow 
2 
ahead of the jet at a large distance from it. 

The radius of curvature was determined from the condition that at the nozzle lip the 
pressure at-the external boundary of the core is the stagnation pressure of the carrier 
stream (allowing for expansion behind the jet) 

o r  

V 2 u g u 2 
lext 1 , 7 - -  

2 2 2 

u~ =exp -- R)' 

whence 

(21) 

The quantities Y2int, Y2ext, ~2 and 6: were calculated in a computer. Here, besides 
these quantities, for each value of uo/V= we calculated the position of the jet axis at the 
nozzle lip relative to its trailing edge (bo2), from the condition that the core boundaries 
Y2int and Y2ex t must come together at one point at the end of the core, i.e., these quan- 
tities must go to zero at the single value x = x z. 

To determine the second empirical constant, we compared the calculated width of the ex- 
ternal and internal mixing zones with experiment, for a jet stream velocity ratio of uo/V~ = 
4.83. It turned out that the value of c2 can be taken to be 0.i. 

The value of bo2 proved to be close to 0.5, i.e., the position of the axis at the nozzle 
lip is almost nodifferent from the position in the ordinary symmetric jet. 

Figure 3 shows the calculated widths of the external and internal mixing zones and their 
boundaries for uo/V~ = 3.23, compared with experimental data of the author. Here the empir- 
ical constant c~ was determined from the first equation of Eq. (16), with expansion of the 
mixing zone of the ordinary immersed jet flowing from the same nozzle, and the value obtained 
was c, ~ 0.049. 

The position of the jet axis relative to which the external and internal mixing zones 
are located was calculated at each section at which we measured the total pressure, assuming 
that the radius of curvature of the jet axis is constant and that the jet passes through the 
middle of the nozzle at the nozzle lip. 

Fig. 

- /  

i ' u o ~  

! 2 x/bo 0 

3. Comparison of the calculated boundaries (a) and the widths of the 
the mixing zones (b) with experimental data with uo/V~ = 3.23. 
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Fig. 4. Boundaries of the external mixing zone and its width as a func- 
tion of distance from the nozzle lip and the velocity ratio of the carrier 

stream and the jet m = V~/uo: a) ci = 0.04; b) cI = 0 05 i 1-3) 81; 4-6) 
Y2ext ; i) m = 0,30; 2) 0.20; 3) 0.05; 4) 0.05; 5) 0.201 0.30. 

It can be seen from Fig. 4 that there is quite satisfactory agreement between the r cal- 
culated and the experimental values. The width of the internal mixing zone can be considered 
to be the same as for an immersed jet. 

To calculate the width and the upstream boundaries of the mixing zone for a given jet 
to stream velocity ratio uo/V~ we can use the graph of Fig. 4, which shows 81 and Ymext as 
a function of x, for various values of uo/V=, ci and with c2 = 0.I. From this graph we can 
determine the parameters of the upstream mixing zone of a planar jet in a carrier stream 
without the aid of a computer. 

NOTATION 

bo2, width of the downstream part of the jet at the nozzle lip (from the jet axis to 
the downstream lip of the nozzle); p, static pressure; R, radius of curvature of the jet 
axis; uo, velocity at the downstream nozzle lip; ul, velocity in the potential core of the 
jet; U~ext , Ulint , velocity at the upstream and downstream boundaries of the jet; V=, velo- 
city of the reference stream; Y~ext, Y~int, ordinates of the upstream and downstream bound- 
aries of the jet; Y2ext, Y2int, ordinates of the upstream and downstream boundaries of the 
potential core; x, y) curvilinear coordinates; x, coordinate directed along the jet axis; 
y, coordinate perpendicular to x; ~, angle between the jet axis and the direction of the 
undisturbed carrier stream; ~, 62, width of the upstream and downstream mixing zones; ~ext = 
(Ylex t -- Y)/~I; ~int = (Ylint -- y)/~2; ~, ~, rectangular coordinates fixed in the nozzle -- 

is directed along the reference stream, and ~ is perpendicular to ~. 

i. 

2. 

3. 

4. 

5. 

6. 
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